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1. Introduction

The focus of my research is on investigating questions in representation theory, often from a geometric
perspective. More specifically, my work has centered around the representation theory of reductive alge-
braic groups over fields of positive characteristic, and certain related structures such as quantum groups,
Frobenius kernels, (restricted) Lie algebras and hyperalgebras. My work also deals with associated
topics in geometry, such as the study of perverse sheaves, parity sheaves, exotic t-structures, the
nilpotent cone (and Springer resolution), the affine Grassmannian, the affine flag variety, and the
semi-infinite flag variety. I am also interested in areas of combinatorics which serve as an interface between
the representation theoretic and geometric sides of my research, this includes various combinatorial aspects
of Kazhdan–Lusztig theory, such as the theory of Kazhdan–Lusztig cells and p-Kazhdan–Lusztig
theory. Particular instances of the connection between representation theory, geometry and combinatorics
can be seen in my publications on the Humphreys conjecture (see [Ha3], [AHR2], and §2.1 below), and
on the Lusztig–Vogan bijection (see [AHR1], [AH], and §2.3 below).

An important example of a reductive algebraic group is the general linear group, denoted GLn(k), con-
sisting of all invertible n × n matrices with entries in a field k. Its Lie algebra, denoted gln(k), is given by
the set of all n× n matrices. Informally, a representation of an algebraic group is simply a vector space on
which the group acts by linear transformations. If the group is reductive and the field k has characteristic
0 (e.g. k = C), then any finite-dimensional representation of the group, or its Lie algebra, can be com-
pletely decomposed into a direct sum of irreducible representations. This implies that every representation
is uniquely determined by a combinatorial invariant known as its character – a certain multivariable Lau-
rent polynomial which generalizes the vector-space dimension. An explicit formula for the character of any
irreducible representation was obtained by Hermann Weyl in the early twentieth century, it is now known
as Weyl’s character formula.

The situation when k is a field of characteristic p > 0 is considerably different. For instance, there exist
non-irreducible finite-dimensional representations which are indecomposable. This implies that the Ext∗-
cohomology between representations is generally non-zero. Also, the problem of computing the characters
of the irreducible representations is significantly more difficult, and still remains open in many cases. In
geometric representation theory, we attempt to address some of these problems, such as computing Ext∗-
cohomology and the characters of irreducible representations, by translating them into questions concerning
sheaves on various algebraic varieties. This is done through the use of categorical equivalences which identify
representations with certain types of sheaves, and maps between representations with morphisms between
these sheaves. Important examples include the category of equivariant coherent sheaves on the cotangent
bundle to the flag variety, as well as categories of constructible sheaves on the affine Grassmannian and the
affine flag variety.

Conversely, let Ñ denote the cotangent bundle to the flag variety and let N ⊂ g denote the cone of
nilpotent elements in g. (If g = gln(k), then N is the subvariety consisting of all nilpotent n× n matrices.)

There is a famous resolution of singularities π : Ñ → N , called the Springer resolution. The study of
equivariant sheaves on these spaces, and their behavior with respect to push-forward along the Springer
resolution is of intrinsic interest. In particular, an avenue of research – known as Springer theory – focuses
on certain categories of constructible sheaves on N which control the representation theory of the associated
Weyl group (e.g. the symmetric group if g = gln(k)). On the other hand, much of my research instead deals
with the study of coherent sheaves on these spaces, which can be called coherent Springer theory. The
motivation for considering coherent sheaves is that they are known to control the representation theory of
the corresponding algebraic group (as opposed the Weyl group). In the characteristic 0 setting, the coherent
sheaves instead control the representation theory of Lusztig’s divided powers quantum group.

To be more precise, the categorical equivalences mentioned above appear in the following diagram

(1.1) DbPervmix
(I∨)(GrG∨ ,k)

∼−→ DbCohG×Gm(Ñ )
[AR]−−−→ DbRep∅(G)

[AMRW]←−−−−− DbPervmix
IW(FlG∨).
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A few brief remarks:

(1) The group G∨ is the Langlands dual group to G (e.g. G∨ = GLn(C) if G = GLn(k)).
(2) The affine Grassmannian GrG∨ admits a stratification by Iwahori orbits which are indexed by the

weight lattice X for G.
(3) The left-most category in this diagram consists of “mixed” Iwahori-constructible perverse sheaves

on GrG∨ .
(4) The category second from the left is the main focus of coherent Springer theory.
(5) The category second from the right is the “extended principal” block of G, where G is the “inverse

Frobenius twist” of G (i.e. the Frobenius morphism can be given by Fr : G→ G).
(6) The right-most category is consists of a certain class of “mixed” Iwahori-constructible sheaves on

the affine flag variety FlG∨ called Iwahori–Whittaker sheaves.
(7) The middle and right-most functors are technically “degrading functors”, in other words, they give

equivalences to a certain graded version of the principal block.

1.1. Overview. The remainder of this statement will be divided into three sections, each corresponding to
an ongoing research program. A short summary of each of these is given below.

Tilting module cohomology and coherent Springer theory (§2). This section gives an overview
of an ongoing research program into coherent Springer theory. Of particular interest are the sheaves on

Ñ which correspond to tilting modules. In this setting, the Humphreys conjecture on support varieties
of tilting modules (see §2.1), can be reformulated into a purely geometric conjecture which predicts the
supports of the push-forwards of these sheaves. This will be explained in §2. In addition, I will formulate a
stronger conjecture – inspired by the results in characteristic 0 due to Bezrukavnikov in [B] – on how these
push-forwards behave when restricted to certain nilpotent orbits.

Recent advances that I have made towards verifying these conjectures will also be summarized. This
includes a verification of the Humphreys conjecture for SLn(k) when p > n, and for reductive algebraic
groups of any type for “sufficiently large” p (see [AHR2]). Another important development is a result which
establishes a link between the “complex” and “modular” Lusztig–Vogan bijection (see [AHR1]), as well as
some interesting new calculations involving perverse coherent sheaves on N (see [AH]).

Thick tensor ideals and p-Kazhdan–Lusztig theory (§3). This section outlines research into under-
standing the tensor structure of tilting modules. The objects of study in this program are the thick tensor
ideals of tilting modules (see [O2], [An]), and the closely related p-Kazhdan–Lusztig cells of the affine Weyl
group (cf. [AHR2, §5], [Je]). A conjectured parameterization of these objects in terms of the tensor structure
of the nilpotent centralizers will be proposed. It turns out that the characteristic 0 analogue of this conjecture
is true, and in fact, gives an instance of the Lusztig bijection between two-sided cells and nilpotent orbits
(see [Lu1]). Thus, the proposed bijection can be regarded as a “p-cell” analogue of the Lusztig bijection.

Geometry and diagrammatics for G1T -modules (§4). This section gives an overview of a program
which aims to apply geometric and diagrammatic methods to the representation theory of G1T (equivalently
the study of X-graded g-modules). A construction of a p-canonical basis for Lusztig’s periodic Hecke module
will be given. Additionally, a potential diagrammatic approach, similar to what has already been achieved
for G in [RW2], [AMRW], is sketched. If successful, it should be possible to obtain combinatorial formulas
for the characters of the irreducible modules of G when p > h, analogous to the formulas obtained in [JW]
for tilting module characters. A possible application of these ideas to Donkin’s lifting conjecture1 is also
noted (see [D, 2.2])).

2. Tilting module cohomology and coherent Springer theory

Let g denote the Lie algebra of G (i.e. the Frobenius twist of the Lie algebra of G). The Frobenius kernel
G1 E G is the subgroup scheme given by the kernel of the Frobenius morphism Fr : G→ G. Fix an action
of Gm on g by z · x = z−2x for any z ∈ Gm and x ∈ g. This induces an action on N which gives k[N ] an
even grading concentrated in non-negative degrees. By a classical result of Andersen–Jantzen ([AJ]), there

1This conjecture is equivalent the classical Humphreys–Verma conjecture.
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exists an isomorphism of graded algebras

Ext∗G1
(k,k) ∼= k[N ].

(As a consequence, the cohomology ring for G1 is concentrated in even degrees.)
Thus, for any two finite-dimensional G1-modules M , N , the cohomology Ext∗G1

(M,N) has the structure
of a finitely-generated k[N ]-module. This module is G-equivariant if M , N have the structure of G-modules.
For any module M , let VG1

(M) be the (set-theoretic) support of Ext∗G1
(M,M), and let V G1

(M) be the
(set-theoretic) support of Ext∗G1

(k,M). Thus, if M is the restriction of a G-module, then these subvarieties
must be given by a union of G-orbits (see [NPV] for an overview on support varieties in this setting).

2.1. The Humphreys conjecture on support varieties of tilting modules. For any dominant weight
λ ∈ X+, let T(λ) denote the corresponding indecomposable tilting module (see [Ja, Appendix E]). The tilting
modules form an important class of representations for G, and are known to be related to parity sheaves on
GrG∨ by the work of Juteau–Mautner–Williamson in [JMW]. They are also stable under tensor product,
and form an additive monoidal subcategory Tilt(G) ⊂ Rep(G). In the 1990s, J. Humphreys conjectured
a description of the VG1(T(λ)) (cf. [Hu1]). An equivalent formulation of this conjecture involving the
V G1

(T(wλ · 0)) for λ ∈ X+ was later given by Achar, Riche and myself in [AHR2, Lemma 8.11]. To
formulate this conjecture, we will first need some preliminaries.

The affine Weyl group Waff admits a decomposition into two-sided Kazhdan–Lusztig cells (see [Hu2]).
These cells parameterize a certain class of two-sided ideals in the associated affine Hecke algebra Haff . In
[Lu1], a combinatorial bijection, known as the Lusztig bijection, between two-sided cells and G-orbits in N
was given. Now by [LX], intersecting two-sided cells of Waff with 0Waff provides a bijection between the set of
right cells of Waff which intersect 0Waff , and the set of two-sided cells of Waff . These particular intersections
are called anti-spherical right cells, and parameterize are certain class of submodules of the anti-spherical
module of Haff (see §3 below). Combining with the Lusztig bijection gives a bijection between anti-spherical
right cells and nilpotent orbits.

The anti-spherical right cells, in particular, give a partition of X since there is a natural isomorphism
X ∼= 0Waff which identifies λ

∼←→ wλ. Restricting this isomorphism to the set of dominant weights X+ ⊂ X
compatibly gives X+ ∼= 0W 0

aff . For each orbit C ⊂ N , let XC ⊂ X denote the corresponding anti-spherical
right cell given by the Lusztig bijection. It is known that X+

C := XC ∩X+ 6= ∅ for any C ⊂ N .

Conjecture 2.1 (Humphreys conjecture). Let C ⊂ N and λ ∈ X+
C , then

V G1
(T(wλ · 0)) = C.

Informally, the Lusztig bijection can be realized by taking support varieties of tilting modules.

The preceding conjecture has yet to be completely verified. However, in the last few years I have managed
to make some fairly substantial progress. For instance, the results in my thesis ([Ha3]), as well as [AHR2],
can be combined to give the following theorem.

Theorem 2.2 (Hardesty). Conjecture 2.1 holds for simple algebraic group G of type A with p > h (e.g.
G = SLn and p > n).

So at the moment, the conjecture remains open only for groups not of type A. But in [Ha3], I, along
with Achar and Riche, still made significant progress towards the conjecture for groups of arbitrary type
by utilizing a number of recent developments in geometric representation theory (see §2.2 below for the
geometric approach). In particular, we obtained the following theorem.

Theorem 2.3 (Achar–Hardesty–Riche). Let G be an arbitrary reductive algebraic group, then there exists
some integer M > 0 such that Conjecture 2.1 holds for all p > M .

Remark 2.4. Unfortunately, there is no explicit bound on the integer M appearing above. In addition, we
were at least able to prove that V G1(T(wλ · 0)) ⊇ C whenever p > h, it is the argument for other inclusion
“⊆”, which requires the strong lower bound on p.
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2.2. Exotic parity objects. The category DbCohG×Gm(Ñ ) is known to possess an exotic t-structure (see

[MR]), whose heart ExCohGm(Ñ ), is graded highest weight (in the sense of [CPS2]), with highest weight
poset (X, ≤) where ≤ denotes the “convex order” (see [AR, §9.4]). Furthermore, there is an equivalence

DbExCohGm(Ñ ) ∼= DbCohG×Gm(Ñ ).

In [AHR2, §2.2], a class of parity objects for DbCohG×Gm(Ñ ) were studied. These objects can be charac-

terized as the “abstract” parity objects of DbExCohGm(Ñ ) in the sense of [CPS1]. Alternatively, they are

the objects corresponding to the tilting sheaves of Pervmix
(I∨)(GrG∨ ,k) under the left-most equivalence in (1.1).

The indecomposable even parity objects are indexed by X, and will be denoted by Ẽ(λ). The irreducible

objects will be denoted by Ṽ(λ).

If p > h, then by [AR, Theorem 1.5], the Ẽ(λ) are sent to T(wλ · 0) under the middle functor of (1.1).
Additionally, the cohomology Ext∗G1

(k,T(wλ · 0)) naturally identifies with the cohomology of the sheaf

π∗Ẽ(w0λ), where π∗ : DbCohG×Gm(Ñ ) → DbCohG×Gm(N ) is induced from the Springer resolution. In

particular, V G1
(T(wλ · 0)) = suppπ∗Ẽ(w0λ). It now follows that the conjecture below is equivalent to

Conjecture 2.1 when p > h.

Conjecture 2.5. Let C ⊂ N and λ ∈ X+
C be arbitrary, then suppπ∗Ẽ(w0λ) = C.

Suppose now that the preceding conjecture holds, then for any λ ∈ X+
C , the orbit C is open in the support

of π∗Ẽ(w0λ) and (informally) the restriction π∗Ẽ(w0λ)|C gives a sheaf on the orbit C. This restriction
identifies with an object in the (derived) module category for the centralizer Gx ⊆ G for any x ∈ C.

It is well-known that Gx admits a Levi decomposition Gx = Gxred n Gxunip, where Gxred is a (possibly

disconnected) reductive group. In [AHR3], methods from classical Clifford theory were used to construct a
highest weight structure on Rep(Gxred). So this category possesses tilting modules which, as in the connected

case, are stable under tensor product. Under the identification of Rep(Gx) with CohG(C), the corresponding

modules can be referred to as sheaves. In particular, by [Ac], for any λ ∈ X+ π∗Ṽ(w0λ)|C is an irreducible

sheaf whenever suppπ∗Ṽ(w0λ) = C, and every irreducible sheaf on C is obtained in this way.

Conjecture 2.6. For λ ∈ X+
C , π∗Ẽ(w0λ) is an indecomposable object of DbCohG×Gm(N ), and the restriction

π∗Ẽ(w0λ)|C is an indecomposable tilting sheaf on C which is indexed by the same “weight” as the irreducible

sheaf π∗Ṽ(w0λ)|C .

Some remarks:

(1) If p > h, then it is not difficult to verify this conjecture for all λ ∈ X+
{0} by explicitly computing

Ext∗G1
(k,T(wλ · 0)) and applying the techniques from [D].

(2) This conjecture can also be verified for the principal nilpotent orbit.

(3) The results of [B] in characteristic 0, where it was proven that Ẽ(λ) = Ṽ(λ) for all λ ∈ X, are
consistent with this conjecture.

2.3. The modular Lusztig–Vogan bijection. The category DbCohG×Gm(N ) has a perverse coherent t-

structure whose heart is denoted PCohGm(N ) (see [Ac]). The functor π∗ is t-exact with respect to the exotic

and perverse t-structures, and thus induces a functor π∗ : ExCohGm(Ñ ) → PCohGm(N ). The irreducible

objects of PCohGm(N ) are all of the form V(λ) := π∗Ṽ(w0λ) for λ ∈ X+, where π∗Ṽ(w0λ) = 0 for λ 6∈ X+.
On the other hand, the machinery of perverse coherent sheaves produces for each orbit C, a functor

IC(C,−) : CohG×Gm(C)→ PCohGm(N ).

For any irreducible sheaf L ∈ CohG×Gm(C), the object IC(C, L) ∈ PCohGm(N ) is irreducible, and further-
more, every irreducible object is of this form. The cohomology of these was explicitly computed in the case
of PGL3 by Achar and myself in [AH].

Now the two equivalent descriptions of the irreducible objects of PCohGm(N ) leads to the following bijec-
tion, called the k-Lusztig–Vogan bijection,

(2.1) X+ ∼←→ {(C, L) | C ⊂ N , L ∈ CohG(C) an irreducible sheaf}.2

2In the characteristic 0 case, this is simply called the Lusztig–Vogan bijection.
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Remark 2.7. In [AH, Theorem 4.5], we also worked out a description of this bijection in the G × Gm-
equivariant setting, which confirmed a conjecture of Ostrik given in [O1].

It is not at all clear from the definition whether this bijection is independent of the characteristic of the
field. In fact, the problem of relating the characteristic 0 bijection to the positive characteristic bijection is
intrinsically interesting, as well as a significant step towards proving Conjecture 2.5 and Conjecture 2.6.

I recently obtained a proof of this independence in joint work with P. Achar and S. Riche (see [AHR1]).

The basic strategy was to extend the theory of exotic t-structures to the case where Ñ is defined over
a complete discrete valuation ring O, with fraction field K and characteristic p residue field F which we
assume to be algebraically closed. In this setup, there is a subcategory of “torsion-free” objects on which

the base-change functors to ÑK and ÑF are t-exact. This allows us to relate the exotic t-structures for K
and F.

The exotic t-structure machinery can then be employed to construct certain “lattices” inside the irreducible

exotic sheaves on ÑK, denoted ṼK(λ) for λ ∈ X. In particular, there is a notion of “minimal” and “maximal”

admissible lattices whose base changes to ÑF are objects of ExCohGm(Ñ ), denoted ∆̃red(λ) and ∇̃red(λ)

respectively. To compare the K and F Lustig–Vogan bijections, it suffices to compare the VF(λ) := π∗Ṽ(w0λ)

to ∆red
F (λ) := π∗∆̃

red(w0λ) and ∇red
F (λ) := π∗∇̃red(w0λ).

Such a comparison requires a theory of balanced nilpotent sections x ∈ gO, which can be thought of as
“nice” O-points inside the K nilpotent orbits (see [Ha2]). As well as some deep structural results on the
centralizer Gx ⊆ G of such a section (G is taken to be a group scheme over O in this case). The necessary
results were all obtained by myself in [Ha2], and are summarized in the following theorem.

Theorem 2.8 (Hardesty). Let x ∈ gO be a balanced nilpotent section.

(1) The morphism Gx → Spec(O) is smooth.
(2) The (discrete) component groups GxK and GxF are isomorphic,

(3) There exists a normal subgroup scheme (Gx)◦ E Gx such that the quotient group scheme A(x) :=
Gx/(Gx)◦ is constant, where A(x)(K) and A(x)(F) are the component groups of the geometric fibers.

The importance of the preceding theorem lies in the fact that when combined with the constructions from
[AHR3], it becomes possible to simultaneously parametrize the irreducible representations for the K and F
centralizers in a way which is consistent with their Clifford theoretic parameterizations. The main results of
[AHR1] are now summarized by the following theorem.

Theorem 2.9 (Achar–Hardesty–Riche). Let CK ⊂ NK and CF ⊂ NF be a pair of orbits with the same
Bala–Carter label, and let x ∈ NO(O) be the balanced nilpotent section. For any λ ∈ X+

C ,

(1) supp ∆red(λ) = supp∇red(λ) = CF,
(2) suppVF(λ) = CF,
(3) ∆red(λ)|CF and ∇red(λ)|CF give the Weyl sheaf and coWeyl sheaf corresponding to the irreducible

sheaf VF(λ)|CF .

In particular, the K and F Lusztig–Vogan bijections coincide by the third statement.

The following corollary on the highest weight structure is also worth noting.

Corollary 2.10 (Achar–Hardesty–Riche). The restriction of ≤ from X+ to X+
C also gives a highest weight

order on Rep(GxF
red).

3. Thick tensor ideals and p-Kazhdan–Lusztig theory

As in §2.1, we let Haff denote the affine Hecke algebra associated to Waff . Also, let Hf ⊂ Haff the Hecke
algebra associated to the finite Weyl group W ⊂ Waff . The algebra Haff can be described as a free Z[t±1]-
module with a basis consisting of Hw for w ∈Waff , and multiplicative structure given by [S, §2]. There also
exists an important right Haff -module Masph = (sign)⊗Hf

Haff , called the anti-spherical module.3

The algebra Haff possesses a canonical basis whose elements are denoted by Hw for w ∈ Waff . This also
induces a canonical basis of Masph given by Mw := 1 ⊗ Hw for w ∈ 0Waff . Now an equivalence relation

3This module is denoted by N in [S, §3]).
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∼0 can be defined on 0Waff , where w ∼0 y if and only if Mw and My generate the same submodule of
Masph. The equivalence classes for this relation are the anti-spherical right cells introduced in §2.1. One
can similarly define left, right and two sided cells in Waff by considering the left, right and two-sided ideals
of Haff generated by Hw for w ∈W .

For each p, there also exists a p-canonical basis of Haff given by pHw for w ∈ Waff , and for Masph given
by pMw for w ∈ 0Waff (see [JW]). In this setup, the relation ∼p can analogously be defined on 0Waff , where
the equivalence classes are called anti-spherical right p-cells. Similarly, p-cells also exist for Waff (see [Je] for
an overview of p-cell theory).

A thick tensor ideal of Tilt(G) is defined to be a full monoidal subcategory I ⊆ Tilt(G), which is closed
under direct sums and direct summands, and satisfies T(λ)⊗ T ∈ I for any λ ∈ X+ and T ∈ I. In [AHR2,
§7.3], an equivalence relation ∼T was defined on X+, where λ ∼T µ if and only if T(λ) and T(µ) generate the
same thick tensor ideal. If 0Waff is identified with the set of alcoves of X+ (under the p-dilated “dot action”
of Waff), then for each anti-spherical right p-cell, the associated p-canonical weight cell of X+ is given by the
union of the lower closures of all alcoves corresponding to the elements of the cell. The following theorem
was proven by Achar, Riche and myself in [AHR2, §7.3].

Theorem 3.1 (Achar–Hardesty–Riche). The equivalence classes for ∼T coincide with the p-canonical weight
cells.

Remark 3.2. This is a generalization to positive characteristic of a result by Ostrik in [O2].

Thus, classifying indecomposable thick tensor ideals of tilting modules is equivalent to classifying right
anti-spherical p-cells.

3.1. Parametrizing p-cells and thick tensor ideals. The equivalence relations ∼0 and ∼p are also
defined on X via 0Waff

∼= X. For this rest of this section these equivalence classes will be simply called the
0-cells and p-cells of X. Let c0(λ) ⊂ X and cp(λ) ⊂ X denote the unique 0-cell and unique p-cell containing
λ ∈ X respectively (in some cases, it will be more convenient to simply write cp and c0).

As in [Ja, II.H.7], let Uζ(gC) denote the Lusztig quantum group group for gC at a primitive pth root of
unity ζ ∈ C. In [O2], a bijection between 0-cells and indecomposable thick tensor ideals of tilting modules
for Uζ(gC) was established. Combining this bijection with the Lusztig bijection gives the diagram

(3.1)

{0-cells}

**

∼ // {I ⊆ Tilt(Uζ(gC))}oo

tt
{nilpotent orbits},

∼

jj

∼

44

where I ⊆ Tilt(Uζ(gC)) denotes an arbitrary indecomposable thick tensor ideal.
The truth of the Humphreys conjecture for quantum groups, proven in [B], implies that the “diagonal”

bijections can be explicitly realized by computing the “relative support varieties” and “classical support
varieties” of tilting modules respectively (see [AHR2, §1.1]).

In the p-cell setting, an analogue to the “horizontal” bijection in (3.1) was obtained in [AHR2, §7]. Now
the major open problem at the moment is to find a natural replacement for the set of nilpotent orbits. A
conjecture for this replacement will be formulated below, but first the following lemma will be required.

Lemma 3.3. If Conjecture 2.1 holds (i.e. for G = SLn and p > n, or for p � 0 in general), then every
0-cell can be decomposed into a disjoint union of p-cells. Precisely, for any orbit C ⊂ N ,

(3.2) XC =
⊔

cp⊆XC

cp.

This reduces the problem of parametrizing p-cells to determining the decomposition in (3.2). Let GC :=
Gx ⊆ G denote the centralizer of some x ∈ C, and let GCred be the reductive quotient. Recall from Theo-
rem 2.9, and Corollary 2.10, that Rep(GCred) is a monoidal highest weight category with weight poset (X+

C ,�).

Now as in [AHR2, §7.3], the thick tensor ideals of Tilt(GCred) give a theory of weight cells for X+
C . Specifically,

for any λ ∈ X+
C , let TCλ ∈ Tilt(GCred) denote the corresponding indecomposable tilting module, then there is

an equivalence relation ∼C on X+
C , where λ ∼C µ if and only if TCλ and TCµ generate the same thick tensor
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ideal. The weight cells are defined to be the equivalence classes for this relation, where for λ ∈ X+
C , cC(λ)

denotes the unique weight cell containing λ (again, it is often convenient to simply write cC).
Before formulating the conjecture note that by [AHR2, Lemma 8.8], every p-cell of X has a nonempty

intersection with X+. This implies that each cp ⊆ XC appearing in (3.2) is of the form cp(µ).

Conjecture 3.4. For any µ ∈ XC , cp(µ) ∩ X+
C = cC(µ). Thus by Lemma 3.3, for any λ ∈ X with

c0(λ) = XC , there is a natural bijection

(3.3) {p-cells contained in c0(λ)} ∼←−→ {weight cells of X+
C}.

Remark 3.5. This conjecture was verified in the special case where p ≥ 2h− 2 and C = {0} in [An], and for
the cells corresponding to the principal and subregular orbits in [Ra]. It can also be confirmed in its entirety
in the type B2 case from the calculations in [Je].

The preceding conjecture is summarized by the following diagram

(3.4)

{p-cells}

**

∼ // {I ⊆ Tilt(G)}oo

ss
{IC ⊆ Tilt(GCred) for C ⊂ N},

∼

jj

∼

33

where I and IC denote arbitrary indecomposable thick tensor ideals.

Remark 3.6. This expected picture is consistent with (3.1), since the category Rep(GCred) is semisimple for
each orbit C ⊂ N in characteristic 0.

4. Geometry and diagrammatics for G1T -modules

Let G1T ⊆ G be the inverse image of T under Fr (for any subgroup H ⊆ G, H1T is similarly defined). If
kλ denotes the corresponding 1-dimensional B+

1 T-module for λ ∈ X, then the baby Verma module is defined

by Z(λ) := CoIndG1T

B+
1 T

kλ, and the co-baby Verma module is defined by Z′(λ) := IndG1T
B1T

kλ. Also, let L̂(λ)

and Q(λ) be the corresponding irreducible and indecomposable injective module respectively.
The baby Verma, co-baby Verma, and indecomposable injective modules for G1T share a number of

key properties in common with the Weyl, coWeyl, and indecomposable tilting modules for G respectively
(see [Ja, Lemma II.9.9, Proposition II.11.2]). In particular, Rep(G1T) behaves very much like a (monoidal)
highest weight category with highest weight poset (X,�). The only issue is that the poset does not admit
a refinement to Z≥0.

The category Rep(G1T) admits a block decomposition which is compatible with the block decomposition
of Rep(G) (cf. [Ja, II.7.2 and II.9.22]). In particular, the (extended) principal block for G1T, denoted

Rep∅(G1T), is defined as the Serre subcategory generated by L̂(w · 0) for any w ∈ Waff . Identifying Waff

with the orbit Waff · 0 ⊂ X, denote

L̂w := L̂(w · 0), Zw := Z(w · 0), Z′w := Z′(w · 0), Qw := Q(w · 0)

for w ∈ Waff . Under this identification, the lattice order � on X induces an order on Waff , also denoted �.

For any w ∈W , all the composition factors L̂x of Zw must all satisfy x � w.

Determining the composition multiplicities [Zy : L̂x] for x � y is a major problem in modular representation
theory. In fact, since the characters of the Zy are known (cf. [Ja, Lemma II.9.2]), this problem is equivalent
to determining the characters of the irreducible G1T-modules (and hence the irreducible G-modules by
[Ja, II.3.17]). Furthermore, computing these composition multiplicities is equivalent to computing the baby

Verma filtration multiplicities of the indecomposable injectives due to the reciprocity result [Zy : L̂x] = [Qx :
Zy] (see [Ja, Proposition II.11.4]). (Computing the [Qx : Zy] is highly analogous to computing the good
filtration multiplicities of tilting modules.)

For any x, y ∈ Waff , let px,y ∈ Z[t±1] denote the periodic Kazhdan–Lusztig polynomial (see (4.1) below).
The following famous theorem is due to Andersen–Jantzen–Soergel, and originally appeared in [AJS].
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Theorem 4.1. Assume p � 0,4 then [Zw0x : L̂w0y] = px,y(1) for any x � y. Furthermore, the degree k

coefficient of px,y actually gives the the multiplicity of L̂w0x in the kth radical layer of Zw0y (see [Ja, D.13]).

Remark 4.2. The singular blocks for G1T are also of interest (see [Ri], [AK], and [NZ]). I explicitly calculated
the radical layers of the baby Verma modules in certain singular blocks for G = GLn in [Ha1].

4.1. The p-canonical basis of the periodic Hecke module. In order to obtain an analogue to Theo-
rem 4.1 in smaller characteristics, it will first be necessary to obtain a “p-analogue” of the periodic poly-
nomials which is compatible with the above multiplicity problem. To define these polynomials, we recall
another important module of Haff , called the periodic Hecke module, which was introduced by Lusztig in
[Lu2]. Following [S, §4], we have

P :=
⊕

w∈Waff

Z[t±1]Pw,

where, as in [Ja, p. 454], the basis element “Pw” is identified with the basis element “A” from via A = w ·A0

with A0 denoting the bottom alcove.
Let P◦ ⊂ P denote the Haff submodule defined in [S, p. 93], so that the periodic canonical basis is the

basis of P◦ appearing in [S, Theorem 4.3(2) and Remark 4.4]. In the present notation, this basis is given by

(4.1) Pw =
∑
w�x

px,wPx,

for w ∈Waff , where pw,w = 1 and px,w ∈ tZ[t] for all w 6= x.
Techniques from coherent Springer theory can now be employed to obtain a p-analogue to the periodic

canonical basis. In particular, it is shown in [CG] that KT×Gm(Ñ ) naturally identifies with P as an Haff -

module, and therefore, DbCohT×Gm(Ñ ) can be regarded as a categorification of P.
To see why this is the case, first consider the following commutative diagram:

(4.2)

DbCohG×Gm(Ñ ) DbRep∅(G)

DbCohT×Gm(Ñ ) DbRep∅(G1T),

Ind

For For

Loc

where the functor “Loc” was constructed in [Ri], and the commutativity has been verified by N. Cooney in
a currently unpublished manuscript.

Let R̃ep∅(G1T) ⊂ DbCohT×Gm(Ñ ) be the abelian subcategory which gets sent to Rep∅(G1T) by “Loc”.

For each w ∈Waff , fix a graded lift grL̂w of L̂w. Also, note that it is possible to obtain graded lifts of the Zw
(and hence Z′w) by employing the action of the affine braid group Baff (studied in [BR]). More specifically,
set grZ1 := i∗O{1}×n∗ (i.e. the structure sheaf of the fiber over 1 ∈ G/B), and for any w ∈Waff , let

grZw := bw · grZ1,

where bw ∈ Baff is the corresponding braid group element. It can be verified that grZw ∈ R̃ep∅(G1T). The
fact that these sheaves “degrade” to the baby Verma modules roughly follows from the general properties

of the Baff action, the linear Koszul duality between the derived fiber product g̃×L {0} and Ñ (regarded as
a DG-scheme), and the geometric realization of the baby Verma module Z1 = Z(0) as a certain skyscraper
sheaf on g̃×L {0} (see [BR] and [Ri]). Similarly, the co-baby Vermas grZ′w lift as well, since grZw and grZ′w
should be related through Serre–Grothendieck duality.

The construction of the grZw via the braid group action can actually be extended to the case where

Ñ is defined over a discrete valuation ring. Then a standard base change argument produces an Haff -
module isomorphism between the equivariant K-theory in characteristic 0 and the equivariant K-theory in
positive characteristic. This reduces the following conjecture to the characteristic 0 case which should be
staightforward to verify.

4This theorem generally fails for p not extremely large relative to h by [W].
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Conjecture 4.3. There is an isomorphism of Haff-modules between KT×Gm(Ñ ) and P given by

KT×Gm(Ñ )
∼−→ P, [grZw0w] 7→ Pw

for all w ∈Waff .

Definition 4.4. For any w ∈ Waff , let pPw ∈ P correspond to the class [grL̂w0w] under the isomorphism
from Conjecture 4.3, and write

pPw =
∑
w�x

ppx,wPw,

where ppx,w = [grZw0x : grL̂w0w] ∈ Z[t±1] is the (graded) composition multiplicity. The set of all pPw will be
called the periodic p-canonical basis and the ppw,x called the periodic p-Kazhdan–Lusztig polynomials.

The truth of this conjecture immediately gives the following (trivial) analogue to Theorem 4.

Corollary 4.5. Assume p > h, then [Zw0x : L̂w0y] = ppx,y(1) for any x, y ∈Waff .

Remark 4.6. In the case where p ≥ 2h− 2, another formula for these composition multiplicities has recently
been obtained by S. Riche and G. Williamson in the forthcoming paper [RW1]. It is shown there that
composition multiplicities are given by the values phx,y(1) for certain x, y ∈ Waff , where the phx,y ∈ Z[t±1]
denote the p-Kazhdan–Lusztig polynomials for the affine Hecke algebra (see [RW2]). In fact, it is likely that
the arguments in [RW1] can be extended to the graded category. (Note that an algorithm for computing the
phx,y is given in [JW].)

The construction of the periodic p-canonical basis, and the categorification of the periodic module above,

are in terms of coherent sheaves on Ñ . It should be possible to obtain similar results by considering a certain

class of sheaves on the semi-infinite flag variety Fl
∞
2

G∨ (cf. [La, §3]). This space also admits a decomposition
into Iwahori orbits, which are indexed by Waff and are called the semi-infinite Schubert cells. As in the cases
involving FlG∨ and GrG∨ , one might expect to form a category

P∞2 := Pervmix
(I∨)(Fl

∞
2

G∨)

of “mixed Iwahori constructible perverse sheaves” on Fl
∞
2

G∨ . The baby Vermas (respectively co-baby Vermas)
would then naturally correspond to the !-pushforwards (respectively ∗-pushforwards) of constant sheaves on
the strata. Unfortunately, it is not possible to define this category in the obvious way since the Iwahori orbits

have both infinite dimension and infinite codimension, and moreover, Fl
∞
2

G∨ does not have the structure of
and ind-scheme.

So instead, P∞2 can be taken to be, informally, a category which naturally “simulates” the expected

behavior of Iwahori-constructible perverse sheaves on Fl
∞
2

G∨ . For instance, P∞2 could refer to the moment-
graph model considered in [La]. The following conjecture can be regarded as an infinitesimal analogue to
(1.1).

Conjecture 4.7. There is an equivalence of categories Db(P∞2 )
∼−→ DbCohT×Gm(Ñ ), where both categories

“compatibly degrade” to Rep∅(G1T).

4.2. A diagrammatic approach. In order to obtain a combinatorial algorithm for computing the compo-
sition multiplicities of the baby Vermas for h < p < 2h − 2 as in [JW], it will first be necessary to obtain

a diagrammatic presentation of Rep∅(G1T) (or R̃ep∅(G1T)). If G = GLn(k), then this should be possible
by using similar methods to [RW2], where the tilting modules for G are replaced with injective modules for
G1T.

In fact, if combinatorial multiplicity formulas can be directly obtained for p < 2h− 2 in this way, then it
is not difficult to show that Donkin’s lifting conjecture for tilting modules (see [Ja, E.9]), can be reduced to
comparing the formulas obtained from this diagrammatic description to those of [RW1].
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